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do11 i=1,n Here we find the index ns of the closest table entry,
dift=abs(x-xa(i))
if (dift.lt.dif) then

ns=i
dif=dift
endif
c(i)=ya(i) and initialize the tableau of c¢’s and d's.
d(i)=ya(i)
enddo 11
y=ya(ns) This is the initial approximation to y.
ns=ns-1
do 13 m=1,n-1 For each column of the tableau,
do 12 i=1,n-m we loop over the current ¢'s and d's and update them.

ho=xa(i)-x
hp=xa(i+m)-x
w=c(i+1)-d(i)
den=ho-hp
if(den.eq.0.)pause ’failure in polint’
This error can occur only if two input xa's are (to within roundoff) identical.

den=w/den
d(i)=hp*den Here the c’s and d’'s are updated.
c(i)=hox*den
enddo 12
if (2*ns.lt.n-m)then After each column in the tableau is completed, we decide
dy=c(ns+1) which correction, ¢ or d, we want to add to our accu-
else mulating value of y, i.e., which path to take through
dy=d(ns) the tableau—forking up or down. We do this in such a
ns=ns-1 way as to take the most “straight line” route through the
endif tableau to its apex, updating ns accordingly to keep track
y=y+dy of where we are. This route keeps the partial approxima-
enddo 13 tions centered (insofar as possible) on the target x. The
return last dy added is thus the error indication.

END

Quite often you will want to callpolint with the dummy argumentga
and ya replaced by actual arraysith offsets. For example, the construction
call polint(xx(15),yy(15),4,x,y,dy) performs 4-point interpolation on the
tabulated valuesx (15:18), yy (15:18). For more on this, see the end§#.4.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.1.

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.

3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, #ma well

approximated by rational functions, that is quotients of polynomials. We de-

note by R;;y1)..(i+m) @ rational function passing through the + 1 points
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3.2 Rational Function Interpolation and Extrapolation 105

(i, Yi) - - - (Titm, Yitm). More explicitly, suppose

Pﬂ(x):po—’—plx—’—”'—’_pﬂx‘u (32])
Qu(r)  qo+qz+-+qa”

Since there arg + v + 1 unknownp’s andq’s (qo being arbitrary), we must have

Ri(it1)...(i4m) =

m+l=p+v+1 (3.2.2

In specifying a rational function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability to model functions with poles, that is, zeros of the denominators
of equation (3.2.1). These poles might occur for real values, of the function
to be interpolated itself has poles. More often, the funcifém) is finite for all
finite real z, but has an analytic continuation with poles in the complgXane.
Such poles can themselves ruin a polynomial approximation, even one restricted t
real values oft, just as they can ruin the convergence of an infinite power series
in z. If you draw a circle in the complex plane around yeuartabulated points,
then you should not expect polynomial interpolation to be good unless the neares
pole is rather far outside the circle. A rational function approximation, by contrast,
will stay “good” as long as it has enough powersiah its denominator to account
for (cancel) any nearby poles.

For the interpolation problem, a rational function is constructed so as to gos
through a chosen set of tabulated functional values. However, we should alsg;
mention in passing that rational function approximations can be used in analytic3
work. One sometimes constructs a rational function approximation by the criterion §
that the rational function of equation (3.2.1) itself have a power series expansion=
that agrees with the firsh + 1 terms of the power series expansion of the desired
function f(z). This is calledPadé approximation, and is discussed i§b.12.
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Bulirsch and Stoer found an algorithm of the Neville type which performs
rational function extrapolation on tabulated data. A tableau like that of equation
(3.1.2) is constructed column by column, leading to a result and an error estimate
The Bulirsch-Stoer algorithm produces the so-catliegional rational function, with
the degrees of numerator and denominator equah (i§ even) or with the degree
of the denominator larger by one (if is odd, cf. equation 3.2.2 above). For the
derivation of the algorithm, refer tid]. The algorithm is summarized by a recurrence
relation exactly analogous to equation (3.1.3) for polynomial approximation:

Ri(iv1y...(i+m) = Bit1)...(i+m)
Rit1y...(i4m) — Bi (i4m—1)
( T—x; ) (1 __ Rayygrm) —Ri i4m-1) ) .
T—Titm Reiv1y.. (ivm) —Ritr1).. (it4m—1)
(3.2.3

This recurrence generates the rational functions thraugh 1 points from the
ones throughn and (the termR ;). (i+m—1) in equation 3.2.3)n — 1 points.
It is started with
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106 Chapter 3.  Interpolation and Extrapolation

and with

Now, exactly as in equations (3.1.4) and (3.1.5) above, we can convert the

recurrence (3.2.3) to one involving only the small differences

Cm,i = Ri...(ier) - Ri...(ierfl)

(3.2.6
Dy = Ri...(ier) - R(i+1)...(i+m)

Note that these satisfy the relation
Crm+1,i — Dmy1,i = Cryis1 — D (3.2.7)
which is useful in proving the recurrences

Cini+1(Cm i1 — D)

L) Dii — Crnita

Dpy1: = (

T—Ti4m+1

(3.2.9

T—Ti4m+1

o (%) Dm,i(cm,i-i-l - Dm,z)
m+1,2 —
(ﬂ) Dyi — Crig1

T—Titm+1

This recurrence is implemented in the following subroutine, whose use is analogou

in every way topolint in §3.1.

SUBROUTINE ratint(xa,ya,n,x,y,dy)
INTEGER n,NMAX
REAL dy,x,y,xa(n),ya(n),TINY
PARAMETER (NMAX=10,TINY=1.e-25) Largest expected value of n, and a small number.
Given arrays xa and ya, each of length n, and given a value of x, this routine returns a
value of y and an accuracy estimate dy. The value returned is that of the diagonal rational
function, evaluated at x, which passes through the n points (Xai,yai), i =1..n.
INTEGER i,m,ns
REAL dd,h,hh,t,w,c(NMAX),d(NMAX)
ns=1
hh=abs (x-xa(1))
do11 i=1,n
h=abs (x-xa(i))
if (h.eq.0.)then
y=ya(i)
dy=0.0
return
else if (h.lt.hh) then
ns=i
hh=h
endif
c(i)=ya(i)
d(i)=ya(i)+TINY The TINY part is needed to prevent a rare zero-over-
enddo 11 zero condition.
y=ya(ns)
ns=ns-1
do 13 m=1,n-1
do 12 i=1,n-m
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3.3 Cubic Spline Interpolation 107

w=c(i+1)-d(i)

h=xa(i+m)-x h will never be zero, since this was tested in the ini-
t=(xa(i)-x)*d(i)/h tializing loop.
dd=t-c(i+1)

if(dd.eq.0.)pause ’failure in ratint’
This error condition indicates that the interpolating function has a pole at the re-
quested value of x.
dd=w/dd
d(i)=c(i+1)*dd
c(i)=t*dd
enddo 12
if (2*ns.lt.n-m)then
dy=c(ns+1)
else
dy=d(ns)
ns=ns-1
endif
y=y+dy
enddo 13
return
END

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.2. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated functiog; = y(z;), ¢ = 1...N, focus attention on one
particular interval, between; andz ;. Linear interpolation in that interval gives
the interpolation formula

y = Ay; + Byjn (3.3.9
where
A= Tt 7T B=1-A=_-2"% (3.3.2
Tjt+1 — Tyj Tjt+1 — Tyj

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolati

formula (3.1.1).
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Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and an undefined, or infinite, second derivative at the

abscissas;. The goal of cubic spline interpolation is to get an interpolation formula

that is smooth in the first derivative, and continuous in the second derivative, both

within an interval and at its boundaries.
Suppose, contrary to fact, that in addition to the tabulated values,ofve
also have tabulated values for the function’s second derivativésthat is, a set
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